Wszystko co musisz wiedzieć o złączu M.2 na płycie głównej komputera

Wszystko co musisz wiedzieć o złączu M.2 na płycie głównej komputera

28.03.2017 09:59

Zalogowani mogą więcej

Możesz zapisać ten artykuł na później. Znajdziesz go potem na swoim koncie użytkownika

Złącze M.2. zostało zaprezentowane światu kilka lat temu jako standard pozwalający wykorzystać pełne możliwości dysków SSD umożliwiając ich instalację w komputerach o mniejszych rozmiarach. Dziś podpowiemy na co należy zwrócić uwagę, aby zakupiony dysk M.2 był kompatybilny z gniazdem na płycie głównej i oferował najlepszy stosunek wydajności do ceny.

Twardziel w każdym pececie

Jeszcze kilka lat temu w każdym pececie znajdował się dysk HDD, a taśmy, kable zasilające i zworki był tematem znanym każdemu, kto samodzielnie składał, modyfikował lub naprawiał komputery. Nośniki wykorzystywały wtedy złącze i interfejs ATA, który oferował przepustowość na poziomie 133 MB/s. Kilka lat później zadebiutował interfejs SATA, który na dobre zadomowił się w świecie nośników pamięci. Doczekał się aż trzech generacji, z których ostatnia wykorzystywana jest do dziś. Pierwsza, czyli SATA 1 zapewnia przepustowość na poziomie 150 MB/s, SATA 2 pozwalała osiągnąć 300 MB /s, natomiast SATA 3 - 600 MB/s.

Nowe rozwiązania

Początek XXI wieku to czasy największej dostępności dysków HDD – ich ceny były niskie, więc każdy mógł pozwolić sobie na kilkadziesiąt gigabajtów pamięci, a kilka lat później – kilka terabajtów. W tym samym czasie na większą skalę zaczęto produkować nośniki wykorzystujące pamięć półprzewodnikową (pamięć flash), które wykorzystywano w urządzeniach mobilnych, kartach pamięci, przenośnych pamięciach USB, a także w komputerach, jako dyski SSD (solid-state drive), które można było wykorzystywać zamiast nośników HDD. Ich zaleta to nieporównywalnie większa prędkość zapisu i odczytu danych, a także brak mechanicznych elementów, co przekłada się na większą wytrzymałość na wstrząsy i upadki. Dyski SSD mogły posiadać też mniejsze rozmiary, ale ze względu na spopularyzowany interfejs SATA zaczęto produkować je w takim samym jak dyski HDD, 2,5-calowym formacie. Dzięki temu, dysk SSD można zainstalować nawet w kilkuletnim komputerze.

Wsteczna kompatybilność ma swoje wady

Interfejs SATA powstał o wiele wcześniej niż dyski SSD, dlatego nawet najnowsza wersja nie jest w stanie obsłużyć ich pełnych możliwości. Ograniczenie to 600 MB/s, czyli maksymalna przepustowość interfejsu SATA 3. To spory problem, bo osiągi dysków SSD mogą być o wiele większe.

Obraz

Problem dużego rozmiaru nośników próbowano rozwiązać wprowadzając standard mSATA, który jest złączem krawędziowym instalowanym bezpośrednio na płycie głównej komputera. Rozwiązanie pozwoliło na instalację dysków SSD w netbookach i ultrabookach oszczędzając miejsce i zmniejszając ich wagę. Niestety, standard mSATA cały czas korzystał z interfejsu SATA 3, a więc i jego ograniczenia – przepustowość wynosząca 600 MB/s.

Złącze M.2 – przyszłość nośników SSD

Standard M.2 zadebiutował jako NGFF (Next Generation Form Factor), czyli jako „złącze kolejnej generacji”. W 2013 roku oficjalnie zmieniono nazwę na M.2. Rozwój zawdzięcza przede wszystkim firmie Intel, która po raz pierwszy wykorzystała je w płytach głównych z chipsetami H97 i Z97 dla ostatniej generacji procesorów Core (Haswell Refresh).

M.2. to złącze kart rozszerzeń instalowane bezpośrednio na płycie głównej. Zostało zaprojektowane z myślą o dyskach SSD, kartach Wi-Fi, Bluetooth, NFC i GPS. W zależności od funkcji, na rynku dostępnych jest kilka wariantów kart M.2: 2230, 2242, 2260, 2280 i 22110. Pierwsze dwie cyfry to szerokość (w każdym wariancie jest to 22 mm), a pozostałe to długość (30 mm, 42 mm, 80 mm lub 110 mm). W przypadku współczesnych dysków SSD najczęściej stosuje się wariant 2280.

Obraz

Standard M.2. do komunikacji z płytą główną wykorzystuje interfejs PCIe (aktualnie rozwijana wersja to PCIe 3.0), który pozwala ominąć ograniczenia standardu SATA 3. W zależności od liczby obsługiwanych linii PCIe, przepustowość dysków M.2 PCIe 3.0 może wynosić 1 GB/s (PCIe 3.0 x1) do 15 GB/s (PCIe 3.0 x16).

Złącze M.2 może obsługiwać protokół PCIe, PCIe i SATA lub tylko SATA. Jeżeli dysk M.2 PCIe zostanie podłączony do płyty głównej, która wspiera tylko standard SATA, to nie będzie on widoczny w systemie i nie będzie możliwości z niego korzystania. Taka sama sytuacja będzie mieć miejsce, gdy dysk M.2. SATA podłączymy do komputera wspierającego tylko interfejs PCIe.

Złącze krawędziowe w kartach M.2 może posiadać różny układ. Na rynku dostępne są karty z kluczem B, M i B+M. Kupując nośnik SSD należy wcześniej upewnić się, jaki rodzaj złącza wspiera płyta główna w komputerze. Dysk z kluczem B nie będzie pasował do gniazda z kluczem M i odwrotnie. Rozwiązaniem tego problemu jest klucz B + M. Płyta główna z takim gniazdem zapewnia kompatybilność z dyskami typu M i B. Należy jednak pamiętać, że nie jest to jedyny czynnik świadczący o zgodności.

Technologia NVMe

Starsze dyski HDD i SSD do komunikacji kontrolera z systemem operacyjnym wykorzystują protokół AHCI. Podobnie jak interfejs SATA, powstał on jeszcze w czasach dysków HDD i nie jest w stanie wykorzystać maksymalnych możliwości nowoczesnych dyskach SSD. Właśnie dlatego stworzono protokół NVMe. Jest to technologia zaprojektowana od zera, z myślą o szybkich nośnikach półprzewodnikowych przyszłości. Charakteryzuje się małymi opóźnieniami i pozwala na wykonywanie większej liczby operacji na sekundę przy mniejszym użyciu procesora. Aby móc skorzystać z nośnika wspierającego NVMe, konieczne jest posiadanie płyty głównej, która wspiera standard UEFI.

Co wybrać?

Obraz

Przez zakupem dysku M.2. należy zwrócić uwagę na:

  • Rozmiar złącza M.2, który posiada płyta główna (2230, 2242, 2260, 2280 i 22110)
  • Typ klucza, który posiada złącze M.2 na płycie głównej (M, B lub B+M)
  • Wspierany interfejs (PCIe lub SATA)
  • Generację i liczbę linii PCIe (np. PCIe 3.0x4)
  • Wspierany protokół (AHCI lub NVMe)

Obecnie najlepszym wyborem jest dysk SSD M.2 korzystający z interfejsu PCIe 3.0x4 i technologii NVMe. Takie rozwiązanie pozwoli na komfortową pracę z gier i programów wymagających bardzo szybkiego odczytu/zapisu i zaawansowanego przetwarzania grafiki. Niektóre nośniki dodatkowo zostają wyposażone w radiator, który obniża temperaturę wpływając tym samym na większą wydajność pracy.

Programy

Zobacz więcej
Źródło artykułu:www.dobreprogramy.pl
Oceń jakość naszego artykułuTwoja opinia pozwala nam tworzyć lepsze treści.
Wybrane dla Ciebie
Komentarze (58)